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Far-infrared bolometric detectors are used extensively in ground-based and
space-borne astronomy, and thus it is important to understand their optical
behaviour precisely. We have studied the intensity and polarisation response of

free-space bolometers, and shown that when the size of the absorber is reduced
below a wavelength, the response changes from being that of a classical optical
detector to that of a few-mode antenna. We have calculated the modal content
of the reception patterns, and found that for any volumetric detector having a

side length of less than a wavelength, three magnetic and three electric dipoles
characterise the behaviour. The size of the absorber merely determines the
relative strengths of the contributions. The same formalism can be applied to
thin-film absorbers, where the induced current is forced to flow in a plane. In
this case, one magnetic and two electric dipoles characterise the behaviour.

The ability to model easily the intensity, polarisation, and straylight charac-
teristics of electrically-small detectors will be of great value when designing
high-performance polarimetric imaging arrays.

© 2009 Optical Society of America
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1. Introduction

Focal-plane arrays of far-infrared bolometers are used extensively in ground-based and space-
borne astronomy. They can be divided into two categories depending on how power in the
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incident radiation field is delivered to the sensing element. In horn or antenna-coupled bolo-
meters, power is collected by a metallic antenna and then delivered to the sensing element

through a transmission structure. This transmission structure could be either a single-mode
transmission line terminating in a resistive load on the bolometer [1], or a waveguide in
which the bolometer is mounted [2] . In free-space coupled bolometers, power is absorbed
directly in a bulk material or resistive film [3–5]. The optical behaviour of single-mode horn

and antenna-coupled bolometers is well understood. The antenna couples power from the

multiple modes of the incoming partially coherent radiation field into the single mode as-
sociated with the transmission structure that connects to the antenna. The fully coherent
antenna pattern can be referenced through the optical system onto the sky, to give the field
distribution to which the complete instrument is sensitive. The equivalent analysis for mul-

timode horns (such as Winston cones) and free-space bolometers is more subtle because the
absorber is receptive to power arriving in a number of optical modes simultaneously. In fact,
the natural modes of the optical system, the natural modes of the field travelling through
the optical system, and the natural modes of the detector are all distinct, and it is more
complicated to calculate the precise form of the field distributions to which an instrument

responds.
In order to optimize the design of astronomical instruments it is vital to understand

the behaviour of free-space bolometers. An optical theory of bolometric detectors has been
proposed by Withington [6] and Saklatvala [7] . According to this theory, bolometers are

characterised with respect to the field on a reference plane, which is deemed to be the
collecting surface of the device. In the case of antenna-coupled bolometers, the collecting
surface may be the aperture of a horn, whereas in the case of free-space bolometers, it may
be the surface of a resistive film. It is then possible to expand the incident field over this

surface in terms of a set of vector basis functions. In the case of partially coherent fields, the
expansion coefficients are random variables. For a particular source distribution, however, it
is possible to find a set where there is no correlation between the expansion coefficients. We
shall refer to the members of this set as the natural modes of the incident field. Similarly, it

is possible to characterise the response of a bolometer in terms of a set of natural modes,

meaning that each mode contributes independently to the recorded output. The total power
measured depends on how the natural modes of the field scatter into the natural modes of
the detector.

A critical question is how do we determine the optical modes to which a system of absorbing

structures is sensitive? The approach often taken at optical wavelengths is to treat a detector
as being sensitive to the intensity of the field integrated over the area of the absorber.
This approach corresponds to assuming that the response is fully-spatially incoherent and
unpolarized over the physical extent of the absorbing surface. To determine the reception
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pattern on the sky, a geometrical optics approach is then taken, meaning that the system is
assumed to be unpolarized and sensitive to intensity only over the re-imaged outline of the

pixel. In this paper we show that this approximation is only valid when the wavelength A

is much smaller then the physical size p of the absorber. This condition is usually satisfied
by optical instruments, because the typical size of a CCD pixel is 5 x 10-6m compared
with 5 x 10-7m for the wavelength of visible light: p/A > 10. At far-infrared and sub-mm
wavelengths, however, devices are being constructed with absorbers that are smaller than

the wavelength of operation: p/A < 1. In order to accommodate this more general case, a full
theoretical model of power absorption has been developed [8], which takes into account the
state of coherence of the incoming field, and the state of coherence of the physical processes
responsible for absorption. The scheme is related to the Method of Moments [9]. Although

the approach is rigorous, it is too cumbersome for certain design problems, particularly when
one wants to use physical optics to model the behaviour of large-format polarimetric arrays.

In this paper, we adopt an intermediate position, and describe the optical behaviour
of free-space bolometers in terms of modes. The underlying principles have already been
presented [10,11], but here we extend the analysis considerably. The basic idea is to place

a bolometer at the back of an ideal imaging system, which characterises the fact that an
incoming field has to travel through free space before arriving at the detector. The degrees
of freedom associated with a propagating field are limited, and these restrictions introduce
spatial correlations and cross polarisation into the reception pattern. Indeed, as the pixel-

size is reduced below a wavelength, the reception pattern becomes increasingly polarized and
divergent from its re-imaged geometrical shape. A key part of the work described here is that
we explore the state of coherence of the angular reception pattern of a naked pixel. In this

way, we show that the behaviour of small volumetric detectors, p/A < 1, can be characterised

by three magnetic and three electric dipoles whose relative strengths are determined by the
size of the absorber. In the case of thin-film absorbers, where the induced currents are forced
to flow in a plane, only one magnetic and two electric dipoles are present.

2. Bolometric detection

The problem of calculating the power absorbed by a free-space bolometer from a field in any
state of spatial coherence has been addressed by Withington [6] and Saklatvala [7] . Assume
that the incident field is temporally stationary, so that different frequency components, w,

can be treated independently. Let D be the input reference plane of the detector, and let
rt be a position vector on this plane. Let ED (rt , w) be the analytic-signal representation of
the incident electric field over D. The first-order spatial correlations can be described by the
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space-domain correlation dyadic

¯ĒD (rt1 , rt2 , w) = (ED (rt1 , w ) E
*
D (rt2 , w ) ) ,	 (1)

where () denotes the ensemble average. ¯Ē (rt1 , rt1, w) has physical significance beyond the
coordinate system used, but a matrix representation can be found by projecting ¯Ē (rt1 , rt2, w)

onto a specific basis: Eij (rt1, rt2, w) = x̂i (rt1) ' ¯ĒD (rt1 , rt2, w) ' x̂j (rt2 ).

Withington and Saklatvala [6,7] have shown that the power absorbed by any bolometer
can be written in the form

(p(w)) = J d2rt1 
J 

d2rt2 DD (rt1 , rt2, w) '' ED (rt1 , rt2, w),	 (2)
D	 D

where the double-dot denotes tensor contraction to a scalar, and t denotes the adjoint. In (2)
a new dyadic field, DD (rt1 , rt2 , w), has been introduced, which characterises the relationship

between the state of coherence of the incident field and the output of the detector. We shall
refer to it as the detector response function.

Both ¯ĒD(rt1, rt2, w) and ¯D̄D(rt1, rt2, w) are Hermitian in all variables, and admit diagonal
decompositions:

	

ED (rt1, rt2, w) =
	

A(n) U (n) (rt1, w) U (n) * (rt2, w) .	 (3)
n

{A(n) } is a set of scalars, and {U (n) (rt , w)} a set of vector fields. Let {A(n) } and {U (n) (rt , w)}
be associated with the decomposition of ¯ĒD (rt1 , rt2, w), and {.y(') } and {R(') (rt , w)} with
the decomposition of ¯D̄D(rt1, rt2, w). Substituting these representations into (2) gives

2

(p  (w)) =
	

.y(') A(n) f d2rt
 R(')* (rt, w) ' U (n) (rt, w)	 (4)

',n	 J.F

(3) corresponds to finding the coherent modes of the field [12], with the A(n) corresponding
to the fraction of the total power carried by each mode. Each R(') (rt , w) is a fully coherent
field to which the detector is sensitive, and each .y(') is the effective responsivity of the mode.
In the case of antenna-coupled bolometers, only one .y(') is non-zero, and (4) takes on the
well-known form for the power coupled between a coherent field and a radio antenna.

3. Bolometric imaging

Consider an optical system comprising two ideal thin lenses separated by the sum of their

focal lengths: Figure 1. A planar bolometer is placed at the focal-plane, F, of one of the
lenses. The system could represent an ideal astronomical telescope, with suitable angular
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scaling at the source plane, S, or a microscope of some kind. The purpose of the model is
to bring out fundamental restrictions on the imaging properties of bolometers, aside from

constraints due to the optical system. We therefore assume that the lenses are large compared
with the wavelength, and that they do not introduce cross-polar scattering. Obviously, the
system cannot image the whole field at S, only the component that is able to propagate to
.F.

Assume that the response function of the bolometer at .F is known, ¯D̄F(rt1,rt2,W), but

we would like to characterize the instrument’s imaging capabilities at S. Therefore, it is
necessary to relate the response functions at .F and S. From (2), the power absorbed is

	

(p (W)) =
J.F 

d2rt1 
J 

d2rt2 D., (rt 1 , rt2 ,W) • • 6P (rt1 , rt2 , W),	 (5)

where ¯6̄P (rt1, rt2, W) is the coherence tensor of the propagating part, EP (rt, W), of the source-

plane field, ES (rt , W). The propagating part can be found by using the angular spectrum of
wavefields [13]. If the Fourier transform of ES (rt , W) is

A (kt , W)=2
I f d

2rt ES (rt , W)exp(—ikt • rt),	 (6)
s

then each component is associated with an expansion function of the form A (kt , W) exp(ikt •

rt) exp(ikz (kt )z), where k = kt + kz ẑ, and |kt |2 + (kz (kt )) 2 = (W/c)2 ; it is assumed the
source plane is at z = 0. Because we are only interested in the part of the field that is
able to propagate from S to .F, we must consider only those Fourier components for which
|kt | < (W/c), and those having vector components transverse to the direction of propagation.
We therefore simply discard those Fourier components not associated with plane waves, and

invert the transform. Strictly speaking, this approach ignores certain boundary conditions
on the tangential component of the E-field at S, but it is appropriate for our purposes.
Applying these constraints gives

	

EP (rt, W) = 1
J 

d 2 kt 
(

¯Z̄— k̂k̂
) 

• A (kt, W ) exp (ikt • rt ) ,	 (7)2
lkt l< w

where Z̄̄  is the unit dyadic in three-dimensions, and Z̄̄  — k̂k̂ strips out any longitudinally

polarized component. Using (7), the correlation dyadic of the propagating field becomes

6P (rt1, rt2 ,W) 
= (27r)2

I
w

d2kt1

J 

d2kt2 exp(ikt1 • rt1) exp(—ikt2 • rt2)

lkt 	lkt l< w 	 (8)

X 
(

¯Z̄ — k̂1k̂1)

 

• ¯Ā(kt1, kt2, W) 
• 

(
¯Z̄— k̂2k̂2) ,
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where ¯¯,A(kt1 , kt2 , w) = ( A(kt1 , w)A (kt2 , w) ) is the k-domain correlation dyadic.
It is now possible to relate the detector response functions at the focal and source planes.

Substituting (8) in (5), and changing the order of integration, gives

(p  (w)) = Id 2 kt1 

J d
2kt2 

[(
I — k1k1) • 9 (kt1 , kt2, w) • (I — k̂2k2) J t 

•• ¯¯,A(kt1 , kt2, w).

kt |<
c	

kt |<
c

(9)
¯9̄ (kt1 , kt2, w) is the k-domain representation of the detector response function on the focal
plane:

9(kt1 , kt2, w) = (2^)2 J.F 
d rt1 

I d
2rt2 DF (rt1 , rt2, w) exp(—ikt1 •rt1) exp(+ikt2 • rt2). (10)

Finally, (9) can be cast back into the space domain giving

1J
d rt1 

J d
2 rt2 Dt

S (rt1 , rt2, w) • • ES (rt1 , rt2, w),	 (11)
s	 s

with

1l

DS (rt1 , rt2, w) = (27r) 2	d
2kt1 d2kt2 

(
Ī̄ — k1k1

)
• 9 (kt1, kt2, w) • 

(
Ī̄  — k2k21

|kt |< w 	|kt |< w 	 (12)

x exp(ikt1 • rt1) exp( — ikt2 • rt2 ).

(10) and (12) together provide a relationship between the response functions at F and

S. Notice that the state of polarization and spatial-coherence of the detector’s response
are altered when referenced to S. The limits on the integrals filter the spatial-frequency
components, and introduce coherence into the reception pattern, which affects its modal

structure. Although an optical system will, in reality, introduce additional constraints, (12)
represents the minimum filtering that a re-referenced response function must incur to give a
reception pattern.

In astronomy, sources are incoherent, and the equivalent source-plane field can be written

2

ES (rt1 , rt2, w) =	 Eij (rt1 , rt2 , w) X̂i ˆXj  (rt1 — rt2 ),	 (13)
i,j=1

where { ˆXi } is a set of orthonormal basis vectors lying in the plane. Substituting (13) into

6



(11) and letting D ij = x̂i • ¯D̄S • x̂j , we obtain

2

^^
	

f(P(w)) = 1:
J d

2rt D*ij (rt , rt, w) Eij (rt , rt, w).	 (14)
i,j=1 s

It follows from (1) that the Eij (rt , rt, w) are elements of a 2 x 2 Hermitian matrix. The matrix

can therefore be expanded in Pauli-spin matrices,

 	  	 )	 
or(1) = 1 0	 or(2) = 1 0) , or (3) = 0 1	 or (4) =

	 0 i	
(15) ),

0 1	 0 —11 0	 —i 0

or
4

Eij (rt , rt, w) =	
(k)

	

2
1:X (rt , w) or

^^ ),	 (16)
k=1

where the coefficients are given by

2
(k) (rt , w) —

1:
Eij (rt , rt, w) Uj(iX	 .	 (17)

i,j=1

If we let {x̂1 , x̂2} = {x̂, ŷ} , then the X(k) correspond to the Stokes parameters of the field on
the source plane. Substituting (16) into (14), we obtain

(p(w)) = i
s d

2rt R* (rt , w) • x(rt , w),	 (18)

where X is the vector of Stokes parameters. The components of R( rt , w) are given by

R(k)2
^k^ (rt , w) = 2 1:Dij (rt , rt, w)or̂ i 	(19)

i,j=1

and they are the position-dependent Stoke’s parameters of the partially coherent reception
pattern of the bolometer. Thus, in the case of spatially incoherent fields, the full response dy-
adic can be replaced with a position-dependent vector, x( rt , w), which describes the response

of the detector to different states of polarisation.

4. Square bolometers

Consider a square bolometer having side length p, and assume that the physical process

responsible for energy absorption is uniform, unpolarized and local. The focal-plane response

7



function is then

	



D.F (rt1 , rt1 , w) = 
aZ S (ro — rt1 ) I x1 I , I 

xelsewhere 
I	 2 I C

	
.2	 (20)

rt - (x, y), and we have assumed that the origin lies at the centre of the absorber. Z̄̄  and 0¯¯

are the 3 x 3 identity and zero dyadics. a is a model parameter representing the absorptivity
of the bolometer and is assumed to be a constant. At F, the natural modes of the bolometer,
ignoring edge effects, form a degenerate continuum spanning all possible field states over the

region defined by the absorber. An important question is whether this model can represent
any physically realizable device. The model was formulated originally to describe black-body
absorbers, and so can best be thought of as representing the response of a square aperture in
the wall of an integrating cavity. Alternatively, it can be thought of as representing a thick,

volumetric absorber, where scattering has, strictly speaking, been ignored. The absorber is
volumetric in the sense that it responds to the z-directed component of the incident electric
field, or equivalently to current flow in the z direction, as well as in the plane. By considering
ohmic power dissipation in the absorber, it is very easy to arrive at (20). This model contrasts

with that of a thin film absorber, which will be considered later.
Combining (20), (10) and (12), gives the response function on the sky,

1
DS (rt1 , rt1 , w) 

= (27r)2 d2kt1  d
2kt2 M (kt1 , kt2 , w) exp (—ikt1 • rt1) exp (+ikt2 •rt2 )

(21)

where	
(	 l	 (	 l

M 
(kt1 , 

kt2 , 
w) 

= H \^ — 
I 
kt1 I ) H \^ — 

I kt2 I )
c	 c

x a (Z — k1k1) • (Z — k2k2

)
	 (22)

x S (kt1 , kt2 , w) ,

and H is the Heaviside step function. The two Heaviside terms represent the necessary
restriction on I kt I for kz to be real and positive. The dyadic operators in (22) strip out

any longitudinal field component, and introduce coupling between the polarisation states of
the wave-fields. We shall refer to S (kt1 , kt2 , w) as the shape function because it encodes all
information about the shape of the pixel. It is given by

S (kt1 , kt2 , w) =(27r)2IAd2rt exp(i (kt1 — kt2 ) • rt )	 (23)

where •A is the square region occupied by the absorber, I x I , I y I C p/2. Free-space absorbers

having different shapes can be modelled simply by changing •A. In the case where •A is a
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square

S (kt1 , kt2 , w) =	 f p 

dx exp(i (kt1 — kt2 ) • x̂ x)
(27r)2	

2

fp

2

X	 d7J exp(i (kt1 — kt2 ) • y 7J)	 (24)
2

(pl
2

\ 27r l 
sinc [ (kt2 — kt1) •x]

X sinc 
L 2p7r 

(kt2 — kt1 ) •y] ,

where we have introduced the normalised sinc function sinc(x) = sin(7rx)/(7rx).

Although (24) has a simple form, there is no obvious analytic solution to (21), and so the
transformation must be achieved numerically. There are two possible options: The first is to
evaluate the integrals directly. In this case, the symmetries can be exploited, meaning that

only the values of the coherence dyadic over an octant of the plane about the pixel centre
need to be calculated explicitly. The second, which we will describe here, involves calculating
the response function using a superposition of fundamental modes. It will be shown that
this latter technique is both numerically advantageous and provides better physical insight,
especially in the p/A limit in which the number of required modes is small.

From (22) and (24) it can be seen that .M̄̄  (kt1 , kt2 , w) is Hermitian in all variables, and

therefore has a decomposition of the form

.M (kt1 , kt2 , w) =
	

(n)V (n) (kt1 , w) V (n)* (kt2 , w) ,	 (25)
n

where the  (n) and V (n) (rt , w) are solutions of

I
d2kt2 .M̄̄ (kt1 , kt2, w) • V (n) (kt2 , w) = 

(n) V(n) (kt1 , w) .	 (26)

The integrals are evaluated over the entire kt-plane. The V(n) (rt1 , w) are the natural modes
of the detector, as discussed in Section 2, but now in the k-domain, and for fields on the sky.

Substituting (25) into (21), gives

DS (rt1 , rt2 , w) =
	 y (n) U (n) (rt , w) U

(n) * (rt , w) .	 (27)
n

where

	

U (n) (rt , w) = 27r I d
2kt V (n) (kt , w) exp (ikt • rt) .	 (28)
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It follows from (27) that the ,},(n) and U (n) (rt , w) are solutions of

I d 
2	 (n)rt DS (rt1 , rt2 , w) U (rt2 , w) = `/ U(n) (rt1 , w) ,	 (29)

which are the natural optical modes of the detector’s response function on the source plane.
This analysis shows that the modes constitute a set of domain-independent fields, and there-
fore have true physical significance. For our purposes, it provides an efficient alternative to
(21) for transforming between .M̄̄  (kt1 , kt2 , w) and ¯D̄S (rt1 , rt2 , w). The procedure is as fol-

lows: (i) Calculate a sampled version of .M̄̄  (kt1, kt2 , w) using (22); (ii) diagonalise according

to (26), (iii) transform the modes into the space domain using (28); and (iv) reconstruct
¯D̄S (rt1 , rt2 , w) using (27).

This modal approach has two distinct advantages over the direct evaluation of the integral

in (21). First, though the modal decomposition requires some numerical overhead, under-
standing the natural modes of the system provides significant physical insight into its optical
behaviour, especially in the limit where the pixel is smaller then the wavelength. Second,
the modal approach is numerically more efficient. Consider transforming the response func-
tion from a grid of points in the Fourier-domain to a grid of points in the space-domain.

The number of two-dimensional Fourier transforms that must be performed to evaluate (21)
scales with the square of the number of sample points. In the modal case it scales with the
number of modes with nonzero eigenvalues. Even when pixel symmetries are exploited, in
most cases the modal approach requires fewer transforms then the direct approach.

5. Numerical implementation

To implement the scheme it is necessary to sample ¯¯.M(kt1 , kt2 , w). Consider sampling

.M(kt1 , kt2, w) over a set of points 
lk

i
) I forming a square-grid over part of the kt plane.

Assume that the grid is centred on the origin, and consists of N points in total, spaced
equally in the kx- and ky-directions at intervals of 2 7r/L: Figure 2a. (26) then becomes a set
of simultaneous linear equations:

N 3 27r 2 	

u]

{ 

E 

E ( L) [
x̂Q  .M( r)

, 
s), w) x̂

 

[
xu  V (n )

 
(k(
 

w)]
s=1 u=1	

l	
(30)

7 (n)
[
x̂Q V (n) (ktr) , w)] 

I ,

for q = 1 to 3 and r = 1 to N. (27r/L) 2 is the area of the plane associated with each sample
point, and {x̂Q } is any set of basis vectors spanning three-dimensional space. Let the matrix
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representation of (30) be
3N

Mij V
(n)
j = 

7 (n) V (n)
i	 ,

j=1

then the problem of solving (26) is reduced to finding the eigenvalues,  (n) , and normalised
eigenvectors, V(n) , of the matrix M. Computationally, we calculate the Mij using (22), solve

for the eigenvalues and eigenvectors using a library function, and then extract the modes
sampled over the grid. Because of the choice of grid of points, the Fourier transform reduces
to a Discrete Fourier Transform (DFT), for which optimised routines can be used. The space-
domain response function, sampled over the grid of points shown in Figure 2b, can then be

reconstructed from the transformed modes using (27).
When finding the natural-modes numerically, we must sample the kt plane sufficiently well

to account for all degrees of freedom. It is easy to appreciate that unless we increase the total
number of points, N, as we increase the sampling rate in the k-domain, the resolution in the

space domain decreases. In fact, to maintain resolution as the k-domain spacing is decreased,
N must scale as L2 . Increasing N, however, comes with the significant numerical overhead
of finding the eigenvector decomposition of a large matrix. The problem can be mitigated
to some extent by remembering that all the elements of M in rows or columns where either
kt1 > w/c or kt2 > w/c are zero. It is straightforward to show that these blocks of zeroes

do not affect the eigenvector decomposition, and further that for all modes V (n) (kt) = 0
when kt > w/c. Consequently, it is possible when performing the eigenvector decomposition
to consider the reduced matrix M3 consisting only of pairs of points where kt1 < w/c and
kt2 < w/c. The values outside the domain kt can then be filled with zeroes in a later step to

increase the resolution in the spatial domain when the mode is Fourier transformed.
A consequence of this result is that the maximum number of modes that can be recovered

depends only on the row (or column) length of M3 , which is equal to three times the number
of points in the grid that fall inside jkt j < w/c, and is increased by increasing L. For the

discretization to be a good approximation to (26) the number of degrees of freedom must,

at the very least, exceed the actual number of natural modes of the system. In practice, this
number is not known in advance. To ensure all natural modes of the system were accounted
for, we iteratively ran the code with increasing values of L for each value of p/A. In each

case, it was assumed L was sufficient when the non-zero eigenvalues stopped increasing in

number and converged on final, individual, values.

6. Simulations I

Figure 3 shows the components of R (rt) for p/A = 0 . 25, 0 . 5, 1, 2 and 4. The black square in
the centre of each plot represents the geometrically re-imaged absorber. For each value of
p/A, the plots have been normalised to the peak value of R1, and R1 is plotted against a

(31)
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single scale spanning 0 to 1 for all p/A. The plots for R2 to R4 have been plotted using a
common colour scale for any given p/A, but the scale changes for different values of p/A.
In [11], Chuss et. al. presented the same quantities using a different, less efficient, numerical
method, and it is pleasing to see that the results are in exact agreement.

The RZ characterise the response of the bolometer to spatially-incoherent partially polar-
ized fields. R1 represents the responsivity to the Stokes Z parameter. Since the Stokes Z

parameter corresponds to intensity, all physically realizable sources will contribute to the

output through this term. The map of R1 reflects the general imaging behaviour of the bo-
lometer. This basic output is modified depending on the state of polarisation of the source
and the values of R2_4 at the source’s location. R2 shows how the response is modified if the
source is a horizontally polarised, R3 if it is diagonally polarised, and R4 if it is circularly

polarised.
When p/A >> 1, R1 indicates that the device is largely only responsive to the intensity of

the source over the region bounded by the outline of the re-imaged absorber. R1_3 show that
the response is slightly polarisation sensitive, reaching 2% of the intensity response at some
points. However, the polarisation-sensitive regions appear only near the edges of the image.

Once p/A < 1 the optical behaviour changes significantly. The bolometer becomes responsive
to the intensity of the field over a circular region that is much larger then the geometrical
image of the absorber. There is also significant polarisation dependence, which in the case of

p/A = 0 . 25 is 10% of the peak intensity response. Notice that the bolometer is insensitive to

the V component for all values of p/A, which follows from symmetry considerations. Overall,
these plots indicate that the behaviour changes from being that of a classical optical detector
to that of a few-mode radio antenna as the size of the absorbing region is reduced below a
wavelength.

The increase in polarisation response with decrease in p/A suggests that the state of coher-
ence of the reception pattern increases, and the number of modes decreases. Figures 4(a)-(c)
show how the mode coefficients change as p/A is varied. In (a) and (b), the coefficients have
been scaled by 1 / (ap2) to remove the dependence on absolute size. In (c) they have been
scaled by 1 / & ry,,, to emphasise the relative contribution of each mode to the output. It can

be seen in (a) and (b) that the number of optical modes to which the bolometer is sensitive
decreases with p/A. In the limit p << A, the bolometer is sensitive, effectively, to only three
modes: two of which are degenerate (Figure (c)). In (a) and (b) it can also be seen that for

p/A < 1 the size of the largest coefficients in each spectrum decreases as p/A decreases. In

general it was found that, for an ordering based on the magnitude of the coefficients, the
modes of a given order tend to have same spatial form for all values of p/A. For the modes
examined, the non-zero part of the field is always confined to a A x A region of the source
plane centered on the re-imaged pixel. The size of this area relates to the coherence length
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enforced on the response function on the sky by propagation.
Figure 5 shows the Stokes response, when p/A = 0 . 25, broken down into the contributions

from the three most significant modes. Very similar behaviour is seen for p/A = 0 .5. It is
clear that the polarisation response is dominated by the first two modes. Combining the
first- and second-mode contributions gives the petal structure seen in Q and U, which is

enhanced by the addition of the third mode. These two modes are degenerate and therefore
represent orthogonal states of polarisation of the same spatial mode. Figure 4(c) suggests

that the behaviour of any electrically small bolometer, p/A < 1, can be modelled by a few
modes weighted by the appropriate coefficients, and so it is intriguing to consider the forms
of these modes.

7. Far-field illumination

Consider the situation where a bolometer is illuminated directly in the far field. This ar-
rangement will allow us to explore the state of coherence of the angular reception pattern.

The field over the surface of the detector can be written in terms of a superposition of plane
waves:

ED (rt , w) = 27r f 
d2kt W (kt , w) exp(ikt ' rt),	 (32)

where internal scattering has been ignored, and it has been assumed that the reference
surface is at z = 0. On substituting (32) into (1) and (2), the power absorbed by the
bolometer becomes

p (w) = 
Id

2 kt1 J d
2kt2 ¯¯g†(kt1, kt2, w) ' ' ¯W̄(kt1 , kt2, w),	 (33)

where ¯ḡ (kt1 , kt2 , w) is as defined in (10), and ¯W̄(kt1 , kt2, w) is as defined by

¯W̄(kt1 , kt2, w) = W (kt1 , w )W (kt2 , w)) .	 (34)

The integral is taken over all possible directions of incidence with respect to the front face of
the reference plane. It may also be true, however, that the bolometer is sensitive to radiation
incident on its reverse face, and the detector response function can be extended easily to
include this possibility. We know that the vector kt is related to a wave’s direction of origin
SZS through

kt = —k ( SxSx + Sy Sy) ' SZS = —k ¯Īt ' SSZ;	 (35)

in addition,

d2kt = —k2 (Sz ' SSZ)dQ.	 (36)
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(33) can then be written

dQ1 
J 

dQ2 A†(2 1 , f22, W) ' ' 13(f2 1 , f2 W 	 (37)p (w) = 
J

where
¯1̄3( S21 , S22, w) =

k4 (SZ ' S21) (SZ ' S22 )

2(27r)2Z0 	
W (—kZt ' fS2 1 , —kZt ' f22 , w ) ,	 (38)

and
¯Āe ( S21 , S22, w) = 2(27r)2Z0

¯Ḡ (—k ¯Z̄t ' S21, —k ¯Z̄t ' S22, w),	 (39)

The factor 2(27r)2Z0 has been introduced because then ¯1̄3 ( S21 , S22, w) takes on the form of
a brightness tensor, and ¯Āe ( S21 , S22 , w) the form of an effective-area tensor. This factor can
be justified more rigorously by using Poynting’s theorem. When the sky is incoherent and
unpolarised, it may be shown, as expected, that

¯1̄3( S21 , S22 ,w) 
= 2 

C
Z — 21 !C2 1

) 
B (SZ 1 , w ) S (SZ 1 — S2 2)	 (40)

and then
p (w) 

= 2 

J d
Q [ ¯Āt ( S2, S2 w)' ' (Z — nn) ] B ( S2 , w),	 (41)

or
p (w) = 

J d
Q Ae ( S2 , w) B ( S2 , w ),	 (42)

which is a well-known result in radiometry [14].
Crucially, it is now possible to find the natural optical modes of the detector in the far-field

by solving	 J
dQ2 ¯Āe (2̂1 ; 2̂2, w) ' U(n) (2̂2 , w) =  (n) U(n)(2̂1,

 

w ).
	 (43)

Expressing the integral in terms of spherical polar coordinates this expression becomes

f 
7r	

f 
27r

J 

d62 
J 

d02 sin 02 Ae (01 , 01 ; 02 , 02) ' U(n) (B2 , 02) = ^ (n)U(n) (B1, 01),	 (44)
0	 0

where the w-dependence has been suppressed for brevity. The integrals are taken over the
full sky, rather then just the forward hemisphere. In its present form, the equation is not
amenable to solution by the numerical, modal method discussed previously. The factor sin 02

means the that the kernel is non-symmetric, unlike the underlying function. Instead, consider
the change of variable u = — cos 0. With this substitution, (43) becomes

J 

+1 

du2 
10

27r
d02 Ae (B (u1), 01 ; B (u2 ), 02) ' U (n) (B (u2 ), 02) = A (n)U(n) (B (u1) , 01).	 (45)

1
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In this form, the modes, U (n) (B (u2 ), O2), and mode-coefficients,  (n) , can be found by sampling
at regularly spaced intervals in the u- and O-ordinate, and finding the eigenvalues and ei-

genvectors of the matrix uO ¯Āe (B (u1), O1; B (u2 ), O2). Some care must be taken with the
values of AO and Du . In the case of the O-ordinate, the integral is taken around a closed
loop and as a result the A O is constant.

8. Simulations II

The above method was used to calculate the natural modes of the angular reception pattern
of the bolometer described in Section 4. Substituting ¯Ḡ (kt1 , kt2, w) for the model pixel into

(39), we find the angular response of the model pixel is given by

Ae (Z1 , Z2; w) = 2ap2Z0 I sinc [P (f2 1 — Z2 ) ' x̂]
(46)

X sinc [pA (Z1 — Z2 ) ' y] ,

where we assume the response in the reverse direction is the same as in the forward direction.
Figure 6 is the equivalent of 4(c) for the far-field mode coefficients. As in the case of re-imaged
pixels, the number of significant modes decreases rapidly as p/A falls below unity. The number
of modes in this limit tends to three, which are degenerate in this case. We also calculated,

although they are not shown here, the angular forms of the first four modes when p/A = 0 . 25.
The modes closely resemble electric and magnetic dipoles having different orientations. To
establish equivalence, we attempted to fit electric- and magnetic-dipole fields to each of the
first four modes. The first three modes showed excellent agreement with fields for x-, y- and

z-orientated electric dipoles, and the fourth mode to a z-directed magnetic dipole.

9. Dipole representations

At the end of the previous section we observed that when p/A = 0 . 25 the far field behaviour
is dominated by a set of dipole-like modes. This suggests that for small p/A, (46) should be
well described by

Ae	 Amn (w) Dm (Ẑ1 )D
n (Ẑ2 )	 (47)

m n

where {Dn (Ẑ)} is the set of spherical vector harmonics corresponding to electric- and
magnetic-dipoles orientated in the x, y and z directions. The matrix elements are given
by

Amn (w ) = dQ1 dQ2 Dm ( ˆZ 1) ' 
¯Āe (Ẑ1 , Ẑ2, w) ' Dn ( ˆZ2) .	 (48)

If Amn is diagonal, it does not automatically follow that the optical modes correspond
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to dipole fields. A mode could, for example, consist of a dipole field in combination with a
higher order spherical harmonic. A measure of how good the approximation is at a particular

wavelength can be obtained by calculating the ratio En Ann/ Em rym , where we have, using

(46),

m 

rym = 
J d

Q Z · · ¯Āe (̂ , ̂ , w) = 167rap2Z0 .	 (49)

If the dipoles correspond to the full set of optical modes, then En Ann = Em rym . Another

useful quantity is Ann / Em rym , which gives the relative responsivity of a bolometer in a
particular dipole mode.

The challenge is to find the matrix elements Amn (w). The reception patterns associated
with differently orientated magnetic dipoles are given by

	

M. (0,	 N (sin 0 0̂ + cos 0 cos 0 c )

	

My (0,	 N (— cos 0̂ + cos 0 sin cp
)
	 (50)

Mz (, = N sin 0 ˆ̂,

where 0̂ and ^̂ are unit vectors, and N is the normalisation factor 3/(87r). Using the same
notation, the fields associated with differently orientated electric dipoles are

	

E. (0,	 N (cos 0 cos 0 0̂ — sin 0 ^̂

	

Ey (0,	 N (cos 0 sin 0 0̂ + cos 0 cp
)
	 (51)

Ez (, = N sin 0 0̂.

When using (50) and (51) in (48) it is beneficial to introduce the operator

T = (0101 + ^1^1) · (0202 + ˆ̂
2
ˆ̂

2

= [cos 01 cos 02 cos(1 — 02 ) + sin 01 sin 2] 0̂10̂2 + cos 01 sin(1 — 02) 0̂1
ˆ̂

2	 (52)

+ cos 02 sin (2 — 0 1 ) ˆ̂1 0̂2 + cos (1 — 02 ) ˆ̂
1
ˆ̂

2 .

Strictly speaking, each of the brackets in the first line of (52) also contains a term of the
form ˆrr̂; however, since neither the magnetic dipole fields or the electric dipole fields have
a component in the radial direction this term can be dropped without effect. Replacing the
idem factor in (46) with T is beneficial because the dipole fields can be represented as two-
element vectors. The conversion between [ 0̂1 , ˆ̂1 ] and [0̂2 , ˆ̂2] is then handled in a by T,

which can be represented by a 2 x 2 matrix.
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In spherical coordinates, (48) becomes

	

7r	 7r	 27r 

P02

7r
Amn (W) = Jd01 d 1d01 	 sin 01 sin 02 D; t (01 , 01) • Ae (01 , 01; 02, 02; W) • Dn (02 , 02 ).

0

(53)
This expression is difficult to solve analytically, and therefore the integrals were evaluated
numerically. To check the software, the limiting case p —* 0 was considered. As p —* 0, from

(48) and (46) it can be shown that

P)

	

1^01 1^02r 141 142167rap2Z0 	 87r
	 sin 01 sin 02 D* (01 , 01) • Dn (02 , 02 ).	 (54)

The integrals that arise in this case can be evaluated analytically. It is found that only the
diagonal elements associated with the electric dipole modes are non-zero, each being equal
to 1 /3. These analytical limits were used to check the software.

10. Simulations III

Figure 7 shows how the diagonal elements, Ann, vary with p/A. Instead of plotting the Ann

directly against p/A, the scaled values Ann/167rap2Z0 are shown. There are two advantages
with this normalisation: The first is that the curves become independent of the bolometer’s

sensitivity a and its absolute size p; the coefficients of a particular device can be found
by reading off the graph and rescaling. The second advantage is that the curves provide a
measure of the relative responsivity to each dipole mode. The numerical error in the values is
of the order of ±1 x 10-4 . It can be seen from Figure 7 that the numerical values of Ann in the

limit p/ —* 0 are in agreement with the analytic values discussed at the end of the previous
section. In addition, the values derived through this method are in agreement with those
that were found when carrying out the full simulations in Section 8. For non-zero p/A, it was
found that the off-diagonal elements, Amn, are zero (within numerical error) for all values

of p/A < 1 . 5. This observation indicates that the reception pattern corresponds, to a good
order, to an incoherent superposition of electric and magnetic dipoles. The values shown in
Figure 7 are proportional to the responsivity of the detector in each of the dipole fields. It
can be seen that the bolometer is equally responsive to power in the x- and y-orientated
electric dipole fields, and similarly in the x- and y-orientated magnetic dipole fields. This

degeneracy is expected from the symmetry of the absorber. As p/A falls, the responsivity
to the electric dipole fields increases, and tends to a limit at p/A = 0. The responsivity to
the magnetic dipole fields increases, peaks at p/A —_ 0 . 75, and then decreases to zero, as the
area tends to zero. The ratio En Ann/ Em `Ym at a particular value of p/A may be calculated

from Figure 7 by summing the contributions from each line. Over the range 0 < p/A < 0 . 5,

En Ann/ Em _Ym is close to unity. In this region, the dipole representation therefore provides
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a reasonably complete description of the bolometer’s behaviour.

11. Thin resistive films

To this point we have considered volumetric absorbers, but the methods described can be
extended to thin resistive films. ‘Thin’ is used here to mean the thickness is very much
smaller then the skin depth, so currents are confined to flow in the plane of the film. In

operation, an incident field induces a surface current density J 3 on the film. Ohmic heating

by these currents then results in the film extracting power from the incident field. If the film
has surface resistance R3 , and is square with side length p, the absorbed power is

P	 P

pP) = 2 j
2

P dx f
2

P
dy R3 ^J3 (x, y) ^2 . (55)

2	 2

The surface current density results from the total field, and therefore contains contributions
from both the incident field and the field scattered by the currents. Strictly, the scattered

field and surface current density are related via the Green’s dyadic for the space, so a
rigorous calculation of the induced current requires solving an integral equation. However,
by assuming the induced surface current is a uniform, infinite, sheet an approximate linear
relationship between the two quantities may be found. This approach ignores the effects of
the edges of the film and the direction of incidence of the radiation, but is sufficient for a

first-order model. It can be shown [15] that the field generated by an infinite sheet current
lying in the plane z = 0 is

E3 (z) = — Z0

2
J3 exp(ik ^z ^).	 (56)

Taking (56) as the scattered field and using the constitutive equation Z3J3 = E (z) + E3 (z),
we find that the induced current can be written in terms of the incident field E (z) as

J3 (x, y)= (R3
 + Z0/2) (

¯Z̄ — ẑẑ) . E (x, y ).	 (57)
1

The dyadic operator picks out the component of the incident field tangential to the surface,
which is necessary since currents can only flow in the plane of the film. (57) shows that the
physical effect of the scattering is to increase the apparent surface impedance of the film.
Substituting (57) into (55), we obtain

P	 P	 P	 P

p (W) =
1	 R3 

2 

f 2

d x1 
f 

2

dy1 f 
2

dx2 f
2

 dy22 (R3 + Z0/2)	
2	 2	 2	 2

f (

(58)

L\
Z — ˆzẑ

)
.
(
Z — ẑẑ) 6 (x1 — x2 )6 (y1 — y2 )] t .. E (x1 , y1)E* (x2 , y2),
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which, when compared with (2), suggests a planar response function of the form

 
12 (R3+Z0 /2)2 

1 
Z — ˆz 1 ˆz 1) 

1 
Z — ˆz2z2) 6(rt1 — rt2) rt1 and rt2 on film

D (rt1 ; rt2; W) =
0	 otherwise

(59)
With the exception of the idem factor, (59) is identical to (20) with a = R3/2(R3 + Z0/2)2 ,

which is the power mismatch factor. This mismatch factor could also have been calculated
on the basis of transmission line theory. The dyadic operator in (59) is position independent,
and so can be taken out of the integral in (10). The angular response function of the resistive
film is therefore simply (46) with the Z replaced by 

1 
Z — ˆz 1 ˆz1) 

1 
Z — ˆz2 ˆz2) . In a spherical

coordinate system, this dyadic constant becomes

1 Z — ˆz 1 ˆz1) 
1 
Z — ˆz2 ˆz2) = cos 01 cos 02 cos(01 — 02 ) 0̂1 0̂2 + cos 01 sin(01 — 02 ) 0̂1

ˆ̂
2

(60)
+ cos 62 sin(02 — 0 1 ) ˆ̂10̂2 + cos(01 — 02 ) ˆ̂

1
ˆ̂

2 ,

where, as in (52), we have suppressed the parts involving ˆr, as dipole fields have no component
in the radial direction. As ^̂ has no component in the zˆ direction, (60) differs from (52) only

in the term in 0̂10̂2 . Consequently, a simple modification is all that is required in order to
model thin-film devices.

12. Simulations IV

Figure 8 shows how the diagonal elements of Amn / En ryn of the thin-film bolometer vary

with p/A. For the resistive film bolometer En ryn = (16p2Z0R3 )/ [3(R3 + Z0/2)2]. The off-

diagonal elements have not been shown, as they are all zero within numerical error. Unlike
the volumetric bolometer, the thin-film bolometer is unresponsive to power in the x- and y-

orientated magnetic dipole fields and the z-orientated electric dipole field for all values of p/A.

This behaviour can be explained by considering the current distributions. The z-orientated
electric dipole field couples to a sheet of current in the z-direction, while the x- and y-
orientated magnetic dipole fields couple to loops of current in the ( x, z) and (y, z) planes. All

of these distributions require a current normal to the surface of the film, and therefore cannot
be supported. The modes that are supported—the x- and y-orientated electric dipoles and
the z-oriented magnetic dipole—couple to currents in the plane of the film. For the modes

that are supported, the behaviour with changing p/A is the same as for the volumetric case.
Similarly, 

E
n Ann / Em rym , obtained by summing the lines at a particular value of p/A, is

greater than 0 . 8 for p/A < 0 . 5. Again this indicates the dipole representation provides a good
description of the bolometer’s far field optical behaviour for small p/A.
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13. Conclusion

We have considered Withington’s [6] and Saklatvala’s [7] theoretical model of the optical be-
haviour of free-space power detectors. In the first part of the paper, we presented an efficient

numerical technique for simulating the behaviour of ideal bolometric imaging systems, and
demonstrated how the intensity and polarisation response change as the size of the absorb-
ing region is reduced below a wavelength: the reception pattern changes, effectively, from
being that of a highly multimode classical optical detector to that of a few-mode radio an-

tenna. The changing form results largely from the limitations imposed by the free-space path
between the source and detector, and therefore the observed behaviour should be character-
istic of all volumetric absorbers. In the second part of the paper, we extended Withington
and Saklatvala’s theory, and considered the angular response of naked pixels. It was found,
for volumetric absorbers having a side length of less than a wavelength, six modes dominate

the intensity and polarisation response: three orthogonal electrical dipoles and three ortho-
gonal magnetic dipoles. As the size of the absorber changes, the relative contributions of the
modes change. The scheme can be modified easily to cover thin-film absorbers. In this case,
current can only be induced in the plane of the film, and the response of small bolometers

is dominated by two electric and one magnetic dipoles. By using a striped, rather than con-
tinuous, resistive film, one would expect to be able to reduce the response to a single dipole
mode. Not only does this work demonstrate that the optical behaviour of any bolometer
can be modelled straightforwardly, it also suggests a particularly simple way of modelling

the behaviour of electrically small bolometers. The ability to simulate easily the imaging,
polarisation, and straylight characteristics of small pixels will be of considerable value when
designing imaging arrays.
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Fig. 1. An ideal imaging system with a free-space bolometer.
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Fig. 2. Figure (a) shows the sampling points in the k-domain, while figure
(b) shows the corresponding sampling points in the spatial domain. In each
case the total number of points is the same. The grey area in (a) indicates the
region of the k-plane where the modes are non-zero.
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Fig. 3. The Stokes parameters of the optical system shown in Figure 1 for
values of p/A in the range 0.25-4.0. In each plot, the positive x-direction is
horizontal from left to right, and the positive y-direction vertical from bottom
to top. The small black square is the re-imaged pixel. For each value of p/A, all
four plots are normalised to the peak flux in the corresponding Z plot. Each
set of U, Q and V plots use the same colour scale, but the scale’s range changes
with p/A.
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Fig. 5. The contributions from the three coherent-modes with the largest
eigenvalues to the Stokes parameters of the reception pattern when p/A=0.25.
The small black square is the re-imaged pixel. All plots are normalised to the
peak flux in the Stokes Z of the full field. The Stokes parameters are plotted
against a single colour scale to emphasise their relative contributions.
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Fig. 6. The normalised coefficients, lyn,/ E lyry,,, of the far-field optical modes.
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Fig. 7. Diagonal elements of Amn as a function of p/A for a volumetric ab-
sorber. The ratio &A nn / Em rym can be calculated for a particular value of
p/A by summing the contributions from each line. This ratio provides a meas-
ure of how well the dipole model describes the behaviour of the absorber, and
is equal to unity when the description is complete.
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absorber
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